国家公务员网 地方站:
您的当前位置:江苏公务员考试网 >> 行测资料 >> 数量

行测点睛:如何求解几何问题中的最短距离

发布:2019-02-14 15:30:12    来源:江苏公务员考试网 字号: | | 我要提问我要提问
  在几何问题的考查中,会遇到求解最短距离的题目,其中最短距离指的是:两点之间线段最短。但是有时候所求是立体图形不在一个平面上的两点,那么怎么来求两点之间的最短距离呢?江苏公务员考试网认为,此时就需要我们运用空间想象的能力,将立体图形展开成为平面图形进行求解。
  1.方法:利用空间想象力,把立体图形展开成一个平面图形,利用最短或最远距离解题。
  2.关键:在求解过程中,会涉及到最短或最远距离,要能找到这些距离。平时在生活中,可以多画一画立体图的展开图,培养自己的空间想象力。
  1.有一个长方体如图所示,上下两个面是正方形,边长为a,高为2a,若从A点到B点的表面最短距离的连线与边CD相交与F点,已知BF长为10,求这个长方体的体积?
\
  A.90 B.90 C.540 D.
  【解析】由题意可将A点和B点最短距离的连线划出,交CD于F点,得到图形如图,由相似三角形知道,BD:BE=BF:AB=1:3,所以知道AB连线为30,由三角形ABE勾股定理得到,,选择选项D。
  平面如图:
\
  2.颗气象卫星与地心距离相等,并可同时覆盖全球地表,现假设地球半径为R,这3颗卫星距地球最短距离为()。

  A. R B. R C.R D.2R
  【解析】3颗卫星组成的平面与地球相切时距离最短且可覆盖全球表面。如图所示,等边三角形顶点到其内接圆圆心距离为2R,卫星距离地球最短距离为R。故选择C选项。
\
  3.如图,正四面体ABCD,P、Q分别是棱AB、CD的三等分点和四等分点(AB=3AP=4CQ),棱AC上有一点M,要使M到P、Q距离之和最小,则MC∶MA=( )。
\
  A.1∶2 B.4∶5 C.3∶4 D.5∶6
  【解析】如图展开,PQ为最短距离。△APM与△CQM相似,MC∶MA=CQ∶AP=3∶4。故选择C选项 
 
点击分享此信息:
没有了   |   下一篇 »
RSS Tags
返回网页顶部
CopyRight 2019 http://www.jsgkw.org/ All Rights Reserved 苏ICP备15022290号-13
(任何引用或转载本站内容及样式须注明版权)XML